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A computational framework is presented for high-fidelity virtual (in silico) experiments
on granular materials. By building on i) accurate mathematical representation of particle
morphology and contact interaction, ii) full control of the initial state of the assembly, and
iii) discrete element simulation of arbitrary stress paths, the proposed framework over-
comes important limitations associated with conventional experiments and simulations.
The framework is utilized to investigate the incremental response of sand through stress
probing experiments, focusing on key aspects such as elasticity and reversibility, yielding
and plastic flow, as well as hardening and fabric evolution. It is shown that reversible
strain envelopes are contained within elastic envelopes during axisymmetric loading, the
yield locus follows approximately the Lade-Duncan criterion, and the plastic flow rule ex-
hibits complex nonassociativity and minor irregularity. Hardening processes are delineated
by examining the stored plastic work and the fabric evolution in the strong and weak net-
works. Special attention is given to isolating in turn the effect of particle shape and inter-
particle friction on the macroscopic response. Interestingly, idealization of particle shape
preserves qualitatively most aspects of material behavior, but proves quantitatively inad-
equate especially in anisotropic stress states. The results point to the importance of ac-
curately resolving particle-scale interactions, that allows macroscopic behavior to emerge
free from spurious micromechanical artifacts present in an idealized setting.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The continuum response of a granular assembly is encoded in the evolving kinematics of particles, driven by frictional
forces at discrete interparticle contacts. Decoding this response experimentally is fraught with difficulties mainly in extract-
ing interparticle forces, and creating reproducible conditions. The Discrete Element Method (DEM) (Cundall and Strack, 1979)
has provided a numerical framework that overcomes these difficulties, but at the same time introduces new limitations, due
to the idealization of granular shape or the incorporation of questionable rolling dissipation (Ai et al., 2011). Recently, a
pivotal advancement that overcomes these limitations has been achieved though the level-set characterization of the mor-
phology of individual grains using X-ray Computed Tomography (XRCT) (Vlahinic et al., 2014), and its utilization within the
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Fig. 1. The concept of a granular ‘DNA’ within virtual experiments.

Level-Set DEM (LS-DEM) framework (Kawamoto et al., 2016). Even more recently, significant steps have been made in val-
idating the method (Karapiperis et al., 2020; Kawamoto et al,, 2018; Li et al., 2019), thus paving the way for a systematic
investigation of granular behavior through high-fidelity virtual experiments.

The cornerstone of experiments on granular matter is stress probing, which relies on achieving multiple incremental
stress paths originating from an identical initial state. Physical stress probing experiments are extremely hard to conduct,
which explains the scarcity of relevant studies (Anandarajah et al., 1995; Royis and Doanh, 1998). On the other hand, numer-
ical stress probing via conventional DEM (e.g. Bardet, 1994; Calvetti et al., 2003a; Tamagnini et al., 2005; Wan and Pinheiro,
2013) has served as an effective platform for the investigation of constitutive behavior in a qualitative sense. The first DEM
stress probing experiments were conducted by Bardet (1994) using disks. Later, Calvetti and coworkers carried out similar
experiments with spheres, and used them to examine the importance of preloading (Calvetti et al., 2003a), inspect the un-
derlying micromechanics (Calvetti et al., 2003b), and assess different classes of continuum theories (Tamagnini et al., 2005).
In several occasions (e.g. when probing from a preloaded state), they identified deviations from classical plasticity in the
form of a nonregular flow rule, which was interpreted as evidence of thorough incremental nonlinearity (e.g. hypoplasticity)
(Tamagnini and Viggiani, 2002). This was in line with later observations in (Kuhn and Daouadji, 2018; Wan and Pinheiro,
2013). The influence of triaxiality on the regularity of the flow rule was investigated in (Wan and Pinheiro, 2013), while the
effect of the rotation of principal stresses was discussed in (Froiio and Roux, 2010). A critical element in analyzing results of
numerical (or virtual) stress probing experiments is the decomposition between elastic and plastic strains. These have been
typically extracted either by unloading to the initial state (Bardet, 1994), or by carrying out additional simulations where
dissipative mechanisms are inhibited (Calvetti et al., 2003a; 2003b; Tamagnini et al., 2005). Wan and Pinheiro (2013) have
suggested that the two approaches are equivalent. On the other hand, Kuhn and Daouadji (2018) observed that the two
approaches produce different decompositions, and examined the relevant implications within the context of a thermody-
namical framework, complementing an earlier discussion in (Collins and Einav, 2005). With the exception of a 2D polygon
study in (Alonso-Marroquin et al., 2005), all the aforementioned studies involve highly idealized particle shapes (disks or
spheres).

The first objective of this paper is to introduce a new paradigm of virtual experiments building on the recent develop-
ment of LS-DEM (Section 2). The framework incorporates an unprecedentedly accurate representation of particle morphology
and interaction, which jointly define a type of granular ‘DNA’. By controlling the expression of that ‘DNA’ to a desired con-
figurational state - a process intractable with preexisting techniques - and evolving that state by imposing arbitrary stress
paths, the proposed framework is established (Fig. 1). In Section 3, the framework is utilized to systematically investigate
the incremental response of an angular sand through multiple stress probing experiments. In a first set of axisymmetric
experiments, the elastic-plastic and reversible-irreversible decompositions of strain are investigated, and the properties of
plastic flow are discussed as functions of the current state and its history. We, then, shed light on the micromechanical
processes driving dissipation, hardening and fabric evolution, and briefly examine the relevant role of fluctuations. Subse-
quent experiments focus on isolating the effect of interparticle friction and particle morphology, and assessing the effect of
the common spherical idealization. In a final set of deviatoric experiments, we map the entire yield surface in 3D principal
space and quantify the nonassociativity of the flow rule as a function of the mean stress and Lode angle. A discussion of the
main findings and the future potential of virtual experiments, in Section 4, concludes this paper.

2. Virtual experiments
Physical experiments of granular materials suffer from poor reproducibility and limited control of initial and boundary

conditions. They also inherently lack the ability to measure interparticle forces, a key ingredient in understanding the con-
stitutive behavior. The proposed in silico experiment framework effectively bypasses these limitations by relying on a) the
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Fig. 2. a) Hostun sand grain segmented from XRCT, b) Slice of grain level set (blue: interior, red: exterior), and c) Particle surface. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

accurate mathematical description of particle morphology and interaction, b) the control of the initial state of the assembly
and c) the enforcement of boundary conditions following an experimental protocol.

2.1. Particle morphology and interaction

The mathematical representation of particle geometry is achieved through mathematical objects termed level sets
(Kawamoto et al., 2016). Given a local (particle) coordinate system, the value of a level set function ¢(x) is the signed
distance from a point x to the grain’s surface, described by the zero-level set {x|®(x) = 0}. Such functions may either be
constructed using standard level set operations (Osher and Fedkiw, 2003) or extracted directly from XRCT images using level
set imaging techniques (Vlahinic et al., 2014), given the increased resolution of modern 3D XRCT technology (Ando et al.,
2013; Cil et al., 2017). An example of extracting a level set of an angular sand grain is given in Fig. 2. From a collection
of grain morphologies, a distribution of geometrical properties spanning multiple scales (e.g. sphericity, roundness) may be
obtained. Finally, this distribution can be sampled to produce granular clones of similar morphology (Buarque de Macedo
et al,, 2018).

The granular ‘DNA’ can be described by these morphological distributions, complemented by interparticle contact laws
and associated grain-scale material properties. A general description of interparticle contact is furnished by thermodynam-
ics; for a discrete contact point ¢, one can consider a Gibbs energy G°(f¢, q¢, ) as a function of the contact force f¢, the
temperature € and an internal variable q¢ related to dissipative events (sliding displacement/contact damage), and an asso-
ciated contact dissipation potential ¢, in analogy to continuum thermodynamics (Onsager, 1931; Ortiz, 2012; Ziegler, 1977).
Presented in Appendix A is a simple formalism, from which various contact laws may be derived. Note that the material
properties on which they rely (e.g. interparticle friction, contact stiffness) may now be directly measured at the grain-scale
by means of compressive (Cole and Peters, 2007), shearing (Cavarretta et al., 2010; Senetakis et al., 2013) and multidirec-
tional (Nardelli and Coop, 2018) tribological experiments conducted between individual particles.

2.2. Control of initial state

Once the granular ‘DNA’ is fully characterized, the next step is to control its expression to a configurational state, that
includes initial stress, density and contact-/particle orientation-fabric. The state may be either obtained using imaging tech-
niques in an in-situ XRCT experiment (Kawamoto et al., 2018), or, more generally, it may generated by simulating a prepa-
ration protocol designed to target particular state properties. The latter relies on simulating particle interaction, through
a level-set based discrete element framework, termed LS-DEM (Kawamoto et al., 2016). Similarly to the original DEM for-
mulation (Cundall and Strack, 1979), LS-DEM resolves the kinematics of grains whose interaction is governed by contact
mechanics, but at the same time is able to represent realistic grain shape. At each time step and contact point, the contact
force f¢ is computed based on the interaction law, and contributes to a moment m¢ about the particle’s center of mass.
Given the inertial properties of the particle, its kinematics are updated using an appropriate time integration scheme of
Newton’s equations of motion. For a detailed explanation of the LS-DEM framework the interested reader is referred to
(Kawamoto et al., 2016).

Fig. 3 shows an example preparation protocol using LS-DEM, where grains are being pluviated from an orifice into a
cubical container. By controlling the height and supply rate of pluviation, as well as the orientation of the container, a
desired packing fraction and fabric may be achieved. Importantly, the complete description of fabric involves not only on
the orientational distribution of contacts - the most common way of quantifying fabric to date (O’Sullivan, 2011) - but also
on the distribution of particle orientations or voids, which is intractable with conventional methods (e.g. DEM). We refer to
Section 3.1 for an example of fabric quantification within the proposed framework.
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Fig. 3. Stages of virtual pluviation of a sample of Hostun sand.

Table 1

Particle properties used in the virtual experiments.
Parameter Value Units
Density (p) 2500 Kg/m3
Normal stiffness (k) 3.10% N/m
Shear stiffness (k) 2.7-10* N/m
Friction coefficient () 0.4 -

Coefficient of restitution (¢) 0.6 -

2.3. Testing protocol

The power of virtual experiments is fully exploited in the testing phase, since they enable the exact replication of any
generated initial state and the enforcement of arbitrary mixed boundary conditions. For example, true triaxial conditions
(Section 3.9) can be easily established without the need for complicated experimental design (Reddy et al., 1992). Before
enforcing such conditions and embarking on a systematic exploration of stress space, it is necessary to establish confidence
in the method within conventional stress paths. Indeed, LS-DEM has recently been validated against physical triaxial com-
pression (Kawamoto et al., 2018) and shear experiments (Li et al., 2019), where parameters were directly computed from
particle material properties and the initial state was replicated using level-set imaging. The method was able to capture
quantitatively the macroscopic (stress-strain), mesoscopic (spatiotemporal prediction of onset and evolution of a shear band
and its kinematics), and particle-scale response (contact-normal and force distribution, and friction mobilization).

3. Stress probing
3.1. Setup

This section details the virtual experiment setup used to investigate the incremental response of an angular sand. The
model consists of 15625 virtual Hostun sand grains', whose morphology has been extracted from u-XRCT data (Section 2.1).
The grain interaction follows a Hookean elastic - Coulomb frictional law (Appendix A), with the relevant properties given in
Table 1. To accelerate the approach to equilibrium, contact damping with a coefficient of restitution of 0.6 is introduced in
the interaction law. Additional experiments verified that the results were insensitive to the choice of coefficient of restitu-
tion, under a sufficiently low dimensionless inertial number (I < 10-3).

We employ LS-DEM to simulate both specimen preparation and stress probing. Via dry pluviation we construct a dense
cubical assembly of virtual Hostun sand particles (Fig. 4) of relative density D, = 85% and corresponding void ratio e =
0.55. To calculate the relative density, the minimum and maximum void ratios were first estimated based on the following
protocols. The densest state was reached by pluviating particles into a container under gravity, and subsequently subjecting
the container to vertical sinusoidal vibration at 60 Hz under constant vertical load, until the void ratio plateaued to a value
emin = 0.51. This method is similar to that described in the ASTM standards (ASTM International, 2006; Chang et al., 2017).
Accordingly, the loosest state was obtained by pluviation from zero height (ASTM International, 2016; Vaid and Negussey,
1984), followed by compression to the same vertical load for consistency with the dense measurement, resulting in a void
ratio emax = 0.74.

Remark 1. The experimentally reported values for Hostun sand are e, = 0.656, emax = 1.0 (Doanh and Ibraim, 2000),
yielding an equivalent void ratio e = 0.71. Note that these values are higher than our simulated values reported above.
This is due to using a different GSD by utilizing few distinct morphologies repeated in the sample to reduce memory re-
quirements.

1 Increasing sample sizes were used to ensure that the size of the unit cell is representative (see Appendix B).
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Fig. 4. a) Virtual specimen of Hostun sand under three dimensional stress conditions. b) Imposed stress states and probing protocol in p-q plane c) Same
in the Rendulic plane.
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Fig. 5. a) Top: Stress probing paths form a circle in the Rendulic plane of stress increments. Marked characteristic paths: isotropic (IE), triaxial (TE) and
deviatoric (DE) extension, isotropic (IC), triaxial (TC) and deviatoric (DC) compression. Bottom: Sketch of the strain response in the Rendulic plane of strain
increments. b) Contact-normal and major particle axis orientation fabric at states A, B and B'.

After pluviation, each specimen is isotropically consolidated to state A by applying a uniform confining pressure of
pa =50 kPa. Note that the sign convention of solid mechanics (compression negative) is adopted here, and we define
p=-1/3tre, q=./3/2s:s where s = ¢ + pl. The confining pressure is applied using numerical servocontrol to adjust the
displacement of the surrounding walls, which are modelled as smooth frictionless elements.> This ensures that the principal
axes of stress and strain are coincident with the axes of the cube (Fig. 4a)) (Calvetti et al., 2003a). Afterwards a drained
triaxial compression along the z-direction is imposed at constant lateral stress oy = oy until an anisotropic state B (qg = 50
kPa), termed the virgin state, is reached. Finally, the samples are subjected to further drained triaxial compression to state
C (qc = 100 kPa), and unloaded to produce the preloaded state B’ (qp = 50 kPa). The packing and history at states A, B
and B’ are stored and cloned (Alonso-Marroquin et al., 2005), since each will serve as the initial condition of a subsequent
axisymmetric stress probing protocol (Fig. 4 b,c)). The latter consists of 32 axisymmetric probes, uniformly distributed in
the Rendulic angle aps = arctan(Aoz/ v2A0y) € [0°,360°), each with a Euclidean norm of 5 kPa, forming a circle in the
Rendulic plane (Fig. 5a)). Characteristic probes include: isotropic (IE), triaxial (TE) and deviatoric (DE) extension, as well
as isotropic (IC), triaxial (TC) and deviatoric (DC) compression. Similarly to earlier studies, the stress states and probing

2 An alternative way to impose the stress state is through periodic boundary conditions. This is avoided in this study since it imposes constraints on the
sample preparation procedure, which in this particular case is non-periodic.
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Fig. 6. a) Elastic-plastic (left) and reversible-irreversible strain decomposition (right) b) Incremental response of a crystalline vs an amorphous assembly
upon a loading-unloading cycle.

magnitudes/angles were chosen such that the effect of anisotropy and history is adequately captured while minimizing
computational demands.

Before analyzing the stress probing response, we quantify the state of the sample beyond the isotropic measure of relative
density discussed above. To this end, Fig. 5 b) shows the orientation histograms for the contact-normals and major particle
orientation axes, computed at all states. The sample exhibits initially (state A) only a slight vertical fabric anisotropy, which
becomes increasingly pronounced at the anisotropic states B, B’. On the other hand, the particle orientation fabric remains
approximately isotropic throughout the experiment.

3.2. Scope

In the remaining sections, we will focus on gaining insight into i) the strain response due to stress probing, mathe-
matically summarized as de = S(0, 17, q) :do, where 5 is the stress probing direction, and q is some representation of the
internal state, and ii) the evolution of the internal state due to probing, succinctly given as dq = #(0, 3. q) : do.

3.3. Strain response

Fig. 6 a) shows two decompositions of the strain response considered in this study. In order to define the elastic-plastic
strain decomposition, we follow the work of Bardet (1994), where the plastic strain is identified as the residual strain upon
unloading to a reference stress state. The elastic strain is, then, recovered by subtracting the residual from the total strain. On
the other hand, the reversible-irreversible decomposition partitions the strain into that arising from reversible and irreversible
grain-scale mechanisms. The reversible response is furnished by an additional set of stress probing experiments in which
frictional dissipation (slip) has been inhibited (Calvetti et al., 2003a). The irreversible component follows by subtracting the
reversible from the total strain response.

As illustrated schematically in Fig. 6b), the elastic-plastic and the reversible-irreversible decompositions may only coincide
in a perfectly crystalline arrangement. Indeed, in that case, the applied loading induces an affine deformation of the contacts,
which is exactly reversed upon unloading. On the contrary, during loading of an amorphous assembly, fluctuations are known
to develop (Richefeu et al., 2012), leading to some contacts behaving elastically, and others sliding variably. Upon unloading,
the contact deformations are not exactly reversed, as measured in a virtual experiment and shown in Appendix C. This
results in an altered configuration, and, hence, the divergence between elastic and reversible response. Macroscopically, this
divergence manifests itself as elastic-plastic coupling (Collins and Einav, 2005; Hueckel, 1976; Kuhn and Daouadji, 2018).

3.3.1. Elastic-plastic strain decomposition

Figs. 7, 8 and 9, show the total, elastic and plastic strain response envelopes (Gudehus, 1979) obtained in this manner
for stress probes originating at states A, B and B’ respectively. The plot insets show the stress-strain response for specific
probes, revealing different amounts of hysteresis depending on the probing direction. A few observations can be made:

- To a first approximation, the total strain envelope at state A is given by an ellipse, while the same envelopes at states
B and B’ are given by two sections of ellipses, one in the direction of deviatoric compression (DC) and another in the
direction of deviatoric extension (DE).

« The elastic envelopes form ellipses, which, for anisotropic states (B, B’), are coincident with the corresponding total strain
envelopes in the direction of previous loading history, essentially corresponding to stress reversal (DE, DC respectively).

« The elastic envelopes are approximately centered at the origin of the Rendulic plane. Non-centricity is more pronounced
in the case of anisotropic states.
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Fig. 7. Total (black), elastic (green), and plastic (red) strain response envelopes for the dense specimen at isotropic state A. Insets: Loading/Unloading stress-
strain curves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Total (black), elastic (green), and plastic (red) strain response envelopes for the dense specimen at virgin state B. Insets: Loading/Unloading stress-
strain curves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Total (black), elastic (green), and plastic (red) strain response envelopes for the dense specimen at preloaded state B'. Insets: Loading/Unloading
stress-strain curves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

« An approximately unique plastic strain increment direction is observed, which is distinct for each state, suggesting in-
cremental bilinearity (Calvetti et al., 2003a). Yet, closer inspection reveals some degree of deviation in the form of angle
dependence for all states. Particularly, at state A, this deviation could be attributed to the presence of a minor vertical
fabric.

» The principal axes of the total, elastic and plastic envelopes are noncoaxial. This is related to the nonassociativity of
the plastic flow rule which is quantified for all three states in Fig. 10. The latter shows the average orientation of the
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the isotropic state A, (b) the anisotropic state B and (c) the preloaded state B'.

Table 2
Measured elastic parameters for isotropic- and transversely
isotropic elasticity.

Model Parameter A B B’
Isotropic E (MPa) 341 45.1 41.2
Elastic

v 0.149 0.113  0.106
Transversely Ex (MPa) 34.2 132 14.6
Isotropic E, (MPa) 34.1 48.2 45.8
Elastic Vx 0.151 0.698 0.616

Vzx 0.147 0.146  0.154

normal to the implied yield surface (interpreted as the locus of stress states corresponding to the same norm of plastic
strain rate) and the orientation of the normal to the plastic potential (i.e. the average orientation of the plastic strain
rate). Their difference is a measure of the nonassociativity of the flow, which appears to be most pronounced in the
anisotropic state B.

By comparing the elastic envelopes at the three states (Fig. 11), we observe an increase in elastic stiffness, and the devel-
opment of elastic anisotropy at states B and B/, compared to state A. The elastic response in each state is quantified by
fitting linear elastic isotropic- and transversely isotropic envelopes, as described in Appendix D. The relevant parameters
are tabulated in Table 2.

3.3.2. Reversible-irreversible strain decomposition
Fig. 12 shows, for all three states, the reversible, irreversible and total strain response envelopes obtained via inhibited-
dissipation experiments. We observe that:
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Reversible strain envelopes form ellipses that are very similar yet slightly smaller than the elastic ones. They are generally
contained within the elastic envelopes.

The difference between elastic and reversible strain, which can be identified as a coupled strain (Kuhn and
Daouadji, 2018), is most pronounced along the directions of (DC) and (DE).

Irreversible strains generally arise for almost all Rendulic angles, with the exception of isotropic compression (IE) and
isotropic extension (IE). The direction of the irreversible strain rate is only weakly dependent on the probing angle,
which defines a slightly irregular flow rule (Wan and Pinheiro, 2013).

For any given state, irreversible and plastic strain increment directions generally coincide.

Preloading leads to a stiffness increase along the (DC) direction, evidenced by the corresponding reduction in total strain.
As a result, total and irreversible strain envelopes become more symmetric at B’ compared to B.

Remark 2. In extracting the reversible response through such numerical experiments, one needs to ensure that no irre-
versible changes occur in the contact topology (creation and extinction of contacts). However, this condition cannot be
guaranteed a priori by only inhibiting interparticle dissipation (slip). Our approach is to accept that some minor topological
changes will occur, and then quantify the extent of these topological changes on the response a posteriori. To do so, we
consider the stress increment during a probe (Christoffersen and Hutchinson, 1979):

Ao=0-0=) fol.-) ol (1)

ceC’ ceC

where f;, I denote the force and branch vectors at the initial configuration, and f, I, denote those at the configuration after
probing. The sets C,C’ represent the collection of contacts at the two configurations. We can rewrite Eq. (1) to obtain the
following decomposition:

Ao= )Y (Fol—-fel)+ ) fel- ) fol (2)

ceCnc’ ceC’\C ceC\C’

where the first term arises from two reversible mechanisms: i) the change in interparticle forces under fixed topology and
ii) the change in fabric due to dissipation-free particle rolling. The second and third terms are due to the change in topology
via creation and loss of contacts respectively, and represent irreversible mechanisms. We find that these last two terms
consistently contribute less than 5% to the stress increment. Hence, we conclude that this approach yields a good (slighty
overestimated) approximation of the reversible response.

In Appendix E, two additional strategies for the estimation of the reversible response are presented: i) a similar numer-
ical construction where particle rotations are also constrained, and ii) an analytical homogenization-based approach. These
methods are shown to provide lower bounds for the reversible response, and are not pursued further.

3.4. Hardening and stored plastic work

In order to shed light on hardening processes, we discuss here the thermodynamics of deformation during a closed cycle.
To do so, we compute the change in the stored elastic energy U¢' = Y" U¢€ and the dissipation increment as dis = ", dy¢,
where the summation takes place over all contacts. Fig. 13a) shows the frictional dissipation in the sample, normalized with
the initial stored elastic energy U0, against the Rendulic angle during loading and unloading probes from the isotropic state
A. We observe that dissipation is present throughout all angles, yet attains its maximum in the (DC) and (DE) directions
at both loading and unloading. Fig. 13b) shows the corresponding normalized change of the elastic energy stored in the
contacts at the end of the loading-unloading cycle, and shows similar angle dependence as the dissipation. This change in
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Fig. 13. a) Frictional dissipation during loading-unloading, and b) stored plastic work in a cycle, both normalized with the initial stored elastic energy, and

plotted against the Rendulic angle, during probing at the isotropic state A.
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Fig. 14. a) Frictional dissipation during loading-unloading, and b) stored plastic work in a cycle, both normalized with the initial stored elastic energy, and
plotted against the Rendulic angle, during probing at the anisotropic state B.

stored energy reflects the arrangement of contacts and corresponds to the stored plastic work (hardening) in the system.
The same quantities are plotted for the anisotropic state B in Fig. 14. At this state, maximum dissipation occurs near (DC),
while almost no dissipation occurs at (DE). During unloading, the situation is reversed, i.e. we observe most dissipation near
(DE). Finally, the distribution of stored plastic work reflects processes occurring during both loading and unloading.

3.5. Micromechanics

3.5.1. Fluctuation-dissipation observations

The goal of this section is to shed light on the nature of dissipation, and reveal its relation to contact fluctuations.
Radjai et al. (1998) established that, in idealized two-dimensional assemblies, full mobilization of friction predominantly
occurs in the so-called weak network. Fig. 15(a) verifies this observation in our 3D granular assembly by plotting, for various
probes, the rate of dissipation at each contact against the associated interparticle force. For large enough contact force
magnitudes, we observe an exponential decay of dissipation with increasing contact force for all probes originating from all
three initial states.

On the contrary, the relation of dissipation to contact fluctuations has not been properly investigated, despite its impor-
tance. Fig. 15(b) shows the rate of dissipation at each contact against the associated magnitude of the fluctuation in the
deformation of the contact (see Eq. (E.1)), which is related to the force fluctuation via the interparticle contact law. We
observe a substantial increase in the rate of dissipation with increasing fluctuation magnitude. In fact, fluctuations that are
lower than a threshold - dependent on the contact scale parameters that govern the frictional limit - exhibit almost no
dissipation which lends credibility to the notion of elastic fluctuations (Appendix E). This observation may be verified picto-
rially by inspecting Fig. 16a) and b). Fig. 16a) shows, for a two-dimensional cross-section of the dense specimen, the contact
deformation fluctuation vectors during probing (computed via Eq. (E.1)), while Fig. 16b) shows the corresponding contours
of frictional dissipation rate at the same instant. One can observe active regions with both pronounced frictional dissipation
and large fluctuation magnitudes.
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Fig. 16. Two-dimensional slices of (a) contact deformation fluctuations, (b) normalized rate of dissipation for the dense specimen.

()

(b)

0.010f~
Coulomb limit
0.005
=
P
0.000~‘ il ‘ .
0.00 0.01 0.02 0.03
fu(N)

0.010f~

0.000¢

Coulomb limit

0.00 0.01 0.02 0.03
fn(N)

(c)

0.010f~

Coulomb limit

0.000¢

fa(N)

Fig. 17. Tangential vs normal contact forces for the dense granular assembly at states (a) A, (b) B and (c) B".

3.5.2. Mobilized friction and plastic debt

The focus of this section is to describe the evolution of the micromechanical state of the sample in terms of mobilized
friction at the contact scale. Fig. 17 shows the relationship between the magnitude of the tangential (f;) and normal (f;) con-
tact force for all contacts in the three considered states. Their ratio represents the contact-scale mobilized friction n = f;/ f,
bounded by the Coulomb limit, while dashed lines represent the system average. Interestingly, we identify a substantial
percentage of contacts at the Coulomb limit at the isotropic state - a departure from previous observations on spheres
(Calvetti et al., 2003b). Not surprisingly, the amount of sliding contacts increases in the anisotropic state B, to accommo-
date the increasing level of macroscopic shear. This is also evident by the increase in the average mobilized friction. At the
preloaded state B, the magnitude of forces increases, while the mobilized friction decreases, in accordance with previous
observations in spheres (Calvetti et al., 2003b).

Further information about the micromechanical state of the system can be obtained by adopting the machinery of
Calvetti et al. (2003Db). To this end, we introduce the scaled mobilized interparticle friction n, = f;/(ufa), noting that
nu < 1 for conventional probes, while 7, > 1 is possible for reversible (inhibited-dissipation) probes. In the latter, the

0.00 0.01 0.02 0.03
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Fig. 18. Mobilized friction versus normal force for the dense granular assembly during stress probing along a) deviatoric compression (DC), and b) devia-
toric extension (DE) at state B.
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Fig. 19. Plastic debt vs contact orientation angle for the dense granular assembly during probing along a) deviatoric compression (DC), and (b) deviatoric
extension (DE) at state B. Dashed lines represent the weighted average orientation of plastic debt at each quadrant.

quantity AfP = f; — uf, is interpreted as a plastic “debt” (as defined in (Calvetti et al., 2003b)), that would be required to
bring sliding contacts back to the Coulomb limit. For conciseness, we only present such measurements for two characteristic
along the (DC) and (DE) directions, at state B. In particular, Fig. 18 shows the mobilized interparticle friction as a function
of the magnitude of normal contact force, for both conventional and reversible probes. Substantial irreversible behavior
emerges during the (DC) probe, which is evident by the development, in the case of the reversible probes, of shear forces
larger than those allowed by the Coulomb condition. On the contrary, during the (DE) probe, only few contacts experience
shear forces above the frictional limit. For the same probes, Fig. 19 reports the plastic debt against the contact orientation
angle projected in the x—z plane (), indicating some degree of preferred orientation albeit with significant scatter. This
is more clearly seen by the misalignment of the weighted average orientation of plastic debt at each quadrant - repre-
sented by dashed lines - with the diagonal directions. A perfect alignment would indicate a uniform (isotropic) orientational
distribution.

3.6. Fabric evolution

The change in structure revealed partially in Sections 3.4 using the isotropic measure of stored energy, and in
Section 3.5.2 using the concept of plastic debt, is now further illuminated by investigating the evolution of fabric. Fig. 20
shows the evolution of different measures of fabric, during probing for the two characteristic probes (DE) and (DC) at state
A. Similarly, Fig. 21 shows the fabric evolution at state B. In particular, (al-a2) and (b1-b2) show the change in orientational
distribution of contact normals that belong to the strong and weak network respectively, along a slice in the x-z plane.
Green and red colors are used to mark a positive (gain) and negative (loss) change in the contact density, respectively. Fur-
ther, (c1-c2) show the orientational distribution of the magnitude of contact displacement fluctuations. For both states and
both probes, we observe that strong network contacts are consistently gained in the direction of compressive loading. On
the other hand, the density of sliding contacts increases roughly in the perpendicular direction, and decreases in a direction
almost parallel to the plastic strain direction. Interestingly, at the isotropic state A while probing along (DC), the sliding
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Fig. 20. Incremental change in fabric of contact normals in (a) the strong force network, and (b) and weak force network, and (c) orientational distribution
of contact displacement fluctuations for probing at state A. Numbers denote loading path (1: DE, 2: DC).
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of contact displacement fluctuations for probing at state B. Numbers denote loading path (1: DE, 2: DC).
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Fig. 22. (a) Total, (b) Elastic and (c) Plastic strain response envelope for the dense granular assembly at the anisotropic state B for varying interparticle
friction.

contact density gain is unimodal in nature, as opposed to the bimodal gain in the case of the same probe at the anisotropic
state B. The same modality difference is observed when comparing the sliding contact density loss for the (DE) probe at
states A and B. For a related discussion on the anisotropy of the weak network in biaxial experiments, we refer to (Alonso-
Marroquin et al., 2005). Finally, the orientation of maximum contact fluctuations appears to be correlated with the direction
of maximum loss of sliding contacts.

3.7. Effect of interparticle friction

In this section we briefly investigate the effect of interparticle friction w in the incremental response. Fig. 22 compares
the total, elastic and plastic strain response envelopes obtained during stress probing at state B for a range of values u € [0.2,
1]. We identify an anticlockwise rotation and contraction of the total and plastic strain response envelope with increasing
interparticle friction. Once the latter increases beyond a critical value ws ~ 0.8, the envelopes converge to a well-defined
shape, and the macroscopic response is completely dictated, at that point, by particle morphology. These observations are
in line with studies showing that the macroscopic friction plateaus with increasing interparticle friction (Luding, 2005). The
elastic envelopes remain essentially unaffected.

3.8. Effect of particle shape

In this section, we focus on investigating the effect of particle shape on mapping the grain-scale behavior to the incre-
mental continuum response. In particular, we choose to address the effect of the common spherical idealization (e.g. Bardet,
1994; Calvetti et al., 2003a; Calvetti et al., 2003b; Froiio and Roux, 2010; Tamagnini et al., 2005; Wan and Pinheiro, 2013),
by comparing the granular sample to an equivalent spherical one; the investigation presented in this work could serve as
the backbone for a systematic study of particle morphology on the incremental continuum response of granular media.
Via the same dry pluviation procedure (Section 3.1), we construct an idealized spherical counterpart of the dense granular
assembly. To this end, each grain is substituted by a sphere of equal volume, while keeping particle material properties
the same. Further, in order to achieve a fair comparison between the spherical and granular assembly, the same relative
density (D, = 85%) is imposed® Note that this consideration compensates partly for shape since it accounts for its effect
on enin, emax (Salot et al., 2009). The latter were estimated as e, = 0.61 and emax = 0.75 respectively, following the same
protocol described in Section 3.1). The granular sample and its idealized spherical counterpart are depicted in Fig. 23. The
spherical specimen undergoes the same isotropic-triaxial compression history in order to achieve states A, B and B/, which,
then, serve as initial conditions to the same stress probing protocols. Fig. 24 compares the strain response envelopes (total,
elastic, plastic, reversible and irreversible) of the idealized and granular assembly at state A, while Figs. 25 and 26 show the
same comparison at states B and B’ respectively. The following observations ensue:

« The spherical assembly exhibits a similar strain response to the granular one at the isotropic state. Yet, at the anisotropic
and preloaded states, the response deviates significantly.

3 Experiments were also conducted for granular and spherical samples created at the same void ratio rather than the same relative density, during which
qualitatively similar differences were observed.
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Fig. 23. Granular assembly and its idealized spherical counterpart.
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Fig. 24. (a) Total, (b) Elastic, (c) Plastic, (d) Reversible, and (e) Irreversible strain response envelope for the spherical and granular assembly at the isotropic
state A.

« The spherical assembly undergoes larger plastic strains, which is consistent with observations of increasing mobilized
macroscopic friction angle with increasing angularity (CEGEO et al., 2012).

At the isotropic state A, the difference in strain response due to particle shape is small, which indicates reduced inter-
locking and mobilization of friction at that state.

At the virgin state B, we observe a substantial increase in magnitude ( ~ 35%), and a shift in the direction of plastic flow
in the case of the spherical assembly.

Differences in macroscopic strain response are most pronounced at state B'. Plastic strains for the spherical specimen are
6 times larger than the granular specimen, while the asymmetry of the irreversible envelope of the granular assembly is
also more prounced.

For completeness, Appendix F extends these macroscopic observations of shape to the grain scale, by comparing the
statistics of micromechanical attributes of the two assemblies.

Remark 3. Note that the above differences in the incremental response due to particle morphology may be partially alle-
viated by incorporating rolling friction into the interaction between spheres, which, however, requires laborious calibration
(e.g. Calvetti et al., 2003a; Plassiard et al., 2009) and does not guarantee realistic behavior beyond the calibrated stress paths.
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Fig. 25. (a) Total, (b) Elastic, (c) Plastic, (d) Reversible, and (e) Irreversible strain response envelope for the spherical and granular assembly at the virgin
state B.
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Fig. 26. (a) Total, (b) Elastic, (c) Plastic, (d) Reversible, and (e) Irreversible strain response envelope for the spherical and granular assembly at the preloaded
state B'.

3.9. Yield surface and flow rule

The final section of this work focuses on quantifying yield and plastic flow in 3D principal stress space, which has
only been investigated through physical experiments or, computationally, for idealized assemblies (Thornton, 2000). To this
end, the specimen described in Section 3.1 is first subjected to isotropic compression followed by rectilinear deviatoric
stress probes with uniformly distributed Lode angle. The process is repeated for deviatoric planes corresponding to multiple
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Fig. 27. (a) Rectilinear deviatoric probes, and (b) Yield surface in principal stress space with surface normals (blue arrows) and incremental plastic strain
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Fig. 28. (a) Deviatoric plane (p=90 kPa), and (b) Meridian plane (8 =0°).

pressure levels, until a cone is covered in the principal stress space (Fig. 27(a)). As opposed to previous studies (Calvetti
et al., 2003a; Thornton, 2000) who only considered a sextant section of a deviatoric plane, here, each plane is completely
covered to account for potential fabric effects. Throughout each probe, the evolution of plastic strain rate is monitored. We
interpret the yield surface as the locus of stress states corresponding to the same value of the norm of plastic strain rate.
We find that beyond a value of ||€”|| =5-10-3, the surfaces essentially converge to an ultimate yield surface, which is
shown in 3D in Fig. 27(b). Fig. 28(a) shows in more detail a particular deviatoric plane (p = 90 kPa), where the convergence
of the sequence of yield surfaces is evident. In the same figure, the plastic strain increments are compared to the yield
surface normals, exhibiting only minor nonassociativity (in regions of pronounced shear), verifying previous experimental
and numerical observations (Anandarajah et al., 1995; Lade, 1977; Wan and Pinheiro, 2013). Further, we find that this minor
degree of associativity is independent of pressure. Fig. 28(b) shows a characteristic meridian plane corresponding to Lode
angle 6 = 30°. In this plane we observe prominent nonassociativity, in accordance with previous experimental evidence that
normality tends to overpredict the volumetric plastic strain. Upon closer observation, we can identify a small decrease in
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Fig. 29. Comparison of analytical yield loci with virtual experiment data.

the degree of associativity with increasing pressure. This is related to the curved nature of the yield surface, highlighted in
the same figure.

Naturally, the next step is to compare these high fidelity results with common analytical yield loci. Fig. 29 com-
pares the yield locus obtained by the experiments against the Lade and Duncan (1973) (113 — bl3 = 0), Mohr-Coulomb
(loj —0;1/(2,/0i0;) —tan¢ = 0), Drucker and Prager (1952) (I; —a; = 0) and Matsuoka and Nakai (1974) (1] —cl3 = 0)
loci, where I, I, I3 are the first, second and third stress invariants, and J, is the second deviatoric stress invariant. The
macroscopic friction angle under compression was calibrated for the Mohr-Coulomb criterion at ¢ ~ 51°. Then the follow-
ing expressions produce the parameters that are consistent with the Mohr-Coulomb criterion:

o 2sing _ (3-sing)? C_9—sin2¢
- V33 -sing)  cos?¢(1—sing) 1 _sin’¢

For each of the criteria, we calculate the average pressure-normalized ¢, error measure, given by e=
1/(pN) N, [|gtSDEM _ gModel ||, " where gtS-DEM gModel are the stress states corresponding to the virtual experiment and
particular model respectively, at the ith point of the discretized yield surface comprised of a total of N points. We obtain:

Model Drucker-Prager ~ Mohr-Coulomb ~ Lade-Duncan  Matsuoka-Nakai

Error (e)  0.137 0.095 0.040 0.076

Among the available loci, the ultimate yield surface is best described by the Lade-Duncan one.

4. Conclusions

We have presented an in silico experimentation framework for granular materials, enabled by the accurate mathematical
representation of the morphology and interaction of particles, as well as the control of their collective state, far beyond what
has been accessible with preexisting techniques. Naturally arising, within this new paradigm, is the concept of a granular
‘DNA’ and its expression to an emergent macroscopic behavior that is largely free from idealizations. The remainder of the
paper focused on utilizing virtual stress probing experiments towards a systematic investigation of the incremental behavior
of sand.

In a first set of axisymmetric experiments, we quantified the reversible (i.e. those due to dissipation-free grain-scale
mechanisms) and the elastic strains (i.e. those recovered upon unloading) in the granular assembly due to axisymmetric
probing. We found that the reversible strain envelopes are slightly smaller (and, hence, contained within) the elastic ones,
and quantified the anisotropy in the elastic response. In accordance with previous works, we identified evidence of a nonas-
sociative and slightly nonregular flow rule. Next, we provided quantitative measurements of energy dissipation and contact
fluctuations, the decoding of which remains the cornerstone of granular mechanics, and exhibited a threshold ‘elastic’ fluc-
tuation above which the onset of yielding occurs. Finally, hardening processes were examined from the perspective of the
evolution of stored plastic work and fabric in the strong and weak contact networks.

Subsequent experiments focused on quantifying the effect of particle friction and morphology on the macroscopic re-
sponse. Regarding the former, a combined effect of rotation and contraction of the strain response envelopes was identified
upon increase of the interparticle friction. Beyond a critical value, the envelopes converge to a stationary envelope dictated
by particle morphology. Remarkably, the idealized spherical counterpart of a granular assembly could qualitatively capture
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almost all aspects of its incremental behavior. Yet, from a quantitative perspective, we identified an important signature of
morphology at anisotropic and, in particular, preloaded states. More specifically, experiments revealed a larger magnitude of
plastic strain and a less pronounced stiffness increase due to preloading in the spherical specimen compared to the actual
granular specimen.

A last set of deviatoric stress probing experiments furnished an important application of the proposed framework, where
the entire yield surface and plastic potential was mapped in 3D principal stress space. We investigated the influence of
pressure and Lode angle on the nonassociativity of the plastic flow, and found that, among the common analytical criteria,
the failure surface was best described by the Lade-Duncan criterion.

The evidence from this study highlights the importance of high fidelity characterization and virtual testing for sands and
potentially many other particulate materials. We are confident that such findings will help expand our understanding of the
behavior of granular materials, and eventually guide the development of a new generation of constitutive theories. Inter-
esting future avenues involve more in-depth investigation of granular fabric as well as the incorporation of grain fracture
and multiphysics coupling. Finally, we see great potential in using virtual experiments to create a high-fidelity database for
different families of granular materials, to be leveraged by data-driven and machine learning techniques.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to acknowledge the detailed analysis of this work by the two anonymous reviewers, which has
contributed to its substantial improvement. Their feedback is gratefully appreciated.

Appendix A. Thermodynamical description of contact interaction

Presented here is a standard thermodynamic formalism of the discrete contact interaction problem. In analogy to con-
tinuum thermodynamics (Ortiz, 2012; Ziegler, 1977), consider the Gibbs energy G¢ at a contact:
G =G“(f, q%, 0) (A1)

as a function of the contact force f¢, the temperature 6 and an internal variable q°¢ related to dissipative events (e.g. sliding).
Neglecting thermal effects, the free energy vanishes at zero interparticle force. A convenient way to formulate the energy is
through the local compliance C¢ at the contact:

sz—%ff~ccff—fc~qc (A2)

By construction, the internal variable q¢ represents the plastic deformation §“P that remains at the contact upon unloading
to zero force,

aG* c.p
q =- =6 (A3)
ofc |¢e_g
The decomposition of the contact deformation into an elastic and plastic part follows by duality:
aG*
§ =g =8+ (A4)
where:
8C=CF or f=C"§° =K (A5)

where K° is the inverse compliance (stiffness) at the contact.
Assuming Ziegler’s orthogonality condition, the dissipative force conjugate to the internal variable is given by:

aG*
08"

Note in passing that the contact compliance is assumed to be independent of internal processes (q°), for the sake of sim-
plicity. Generalization towards contact damage or aging (Sadrekarimi and Olson, 2010) is easily achieved by dropping this
assumption. In order to obtain a closed set of equations, the above equilibrium relations need to be combined with ap-
propriate kinetic relations (Ortiz, 2012). Indeed, the existence of a kinetic (dissipation) potential ¢ follows from standard
thermodynamic arguments (Onsager, 1931) such that:

5P oy (A7)

X = —f (A.6)
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In an algorithmic (incremental) setting, we obtain the equivalent relations:

dé =ds*¢ +dsP (A.8)
dfe = K°d§“® (A.9)
dé“P e dyy© (A10)

Finally, to fully determine the contact law, a specific form of the contact stiffness and the kinetic potential needs to be
identified. The prototypical example, used in the stress probing experiments of Section 3, is that of a Hookean stiffness with
Coulomb friction. In this case, the contact stiffness is given by:

K =CT=kin“®@n‘+ k(s @S+t @ t°) (A1)

where (n¢, s¢, t°) form a local cartesian system at the contact ¢, and k§, kf are the normal and tangential stiffness respectively
(Agnolin and Roux, 2007b), while the kinetic potential is given by the indicator function I (f°) of the Coulomb cone C:

Cc={f|||ff - n)n°|| - u(f-n°) <0} (A12)
where n¢ denotes the contact normal, and w the interparticle friction.

Remark 4. The thermodynamic description provided herein is far from general. Instead, the contact scale interaction is
treated as ‘standard’ material behavior, which includes a specific form of the Gibbs free energy and the restrictive statement
of Ziegler’s orthogonality. As a result, complex interaction laws such as frictional Hertzian contact cannot be captured by
the framework in its current form. For a more general discussion of thermodynamic modeling applied to the continuum
behavior of frictional materials, the interested reader is referred to (Collins and Houlsby, 1997).

Appendix B. Effect of the size of the RVE

We verify the representativeness of the granular assembly through a simple investigation of the effect of sample size.
Four samples of the same relative density (D, = 85%) were constructed, that comprised of an increasing number of grains
(4913, 9261, 15,625 and 19,683 respectively). The samples were subjected to drained triaxial compression to the anisotropic
state B, followed by an axisymmetric stress probing protocol (Section 3.1). We observe satisfactory convergence of the strain
response to a well defined envelope for sample sizes above 15,625 grains (Fig. B.30).

4913 grains
9261 grains

0.0000 s®a 15625 grains ||
19683 grains
4
—0.0002

0.0000 0.0002
ﬁAex

Fig. B.30. Effect of sample size on the strain response envelope.

Appendix C. Irreversibility of contact deformation during unloading

We provide evidence of the irreversibility of contact deformation upon unloading, similarly to a recent investigation by
Kuhn and Daouadji (2018). To do so, we track the contacts that were sliding during loading for a probing experiment at
state B. In particular, Fig. C.31 shows the transition of the number of such sliding contacts N¢, normalized by the number
of particles NP, upon unloading for various probing directions. We observe that a significant proportion of sliding contacts
continue to slide during unloading, regardless of the direction of probing. This evidence suggests that contact deformations
are not reversed during unloading.
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Fig. C.31. Transition of number of contacts, normalized by number of particles, that were sliding during loading, plotted as a function of the probing angle.

Appendix D. Calculation of elasticity parameters

We address the calculation of elasticity parameters in Table 2. First, a least-squares fit is applied to solve for the compo-
nents of the elastic stiffness tensor C (in the principal plane) below:

Aoy n G G Ae
AO’y = C21 C22 C23 AEy (D] )
Ao, G G Gs||Ae
given the data pairs (Ao, Ae) for all probes at a specific state. By comparing the fitted stiffness tensor C, to the isotropic
and transversely isotropic elasticity tensors:

4 1/E  —v/E —v/E 1/Ex —W/Ex  —vx/E;
cso=|—-v/E 1/E —vJE C'™ = | —vy/Ex  1/Ey G (D:2)
—v/E —v/E 1/E —V/E; (&) 1/E;

we obtain the Young’'s modulus E and Poisson’s ratio v, in the case of isotropy, as well as the transverse and longitudinal
moduli Ey, E;, and the associated Poisson’s ratios vx(= Vxy = Vyx), Vzx, in the case of transverse isotropy.

Appendix E. Reversible strain response

We discuss alternative strategies for extracting the reversible strain response of an assembly. As outlined in Section 3.3,
by carrying out probes where frictional dissipation has been inhibited, we obtain slightly overestimated reversible strain en-
velopes, due to the relaxation of the contact topology. Here we compare these envelopes to those produced by two alterna-
tive strategies: i) the inhibited-dissipation/rotation approach of Calvetti et al. (2003a), and ii) an analytical homogenization-
based approach.

The first method delivers the reversible response through a set of probes where we inhibit not only frictional dissipation
but also grain rotation (Calvetti et al., 2003a). This additional constraint is introduced in order to preserve the contact
topology, yielding a purely reversible process. However, constraining rotations has the undesired side-effect of stiffening
(underestimating) the reversible response, producing a loose lower bound for the true reversible strain response. Further,
rotational constraints induce external moments on the particles, which lead to the development of couple stress. The latter
is known to affect the development of RVE-scale and meso-scale instabilities (Oda and Iwashita, 2000), and, hence, the
determination of the true material response. The second method, detailed in the next section, extracts the reversible strain
component by relying on an analytical homogenization technique and a new closure relation, that extend previous results
on idealized elastic assemblies.

Fig. E.32 compares the reversible response furnished by the inhibited dissipation approach (Section 3.3.2) to that of the
inhibited dissipation/rotation approach as well as the homogenization-based method, for states A, B and B’ considered in
this study. The last two methods give very similar results, and tend to equally underestimate the response, particularly in
the (DC) and (DE) directions.

Homogenization-based approach

We derive a micromechanical expression for the decomposed reversible and irreversible strains in an assembly. To this
end, consider an RVE of arbitrarily shaped particles, which is subject to an average strain increment de and, thus, develops
a stress increment do. At any contact ¢ within the assembly (Fig. E.33) (between particles p, q), the displacement d§¢ can be
described (Liao et al., 1997) by a projection of the average displacement gradient de to the branch vector I, corrected by a
nonaffine displacement fluctuation. In all generality :

8¢ = de - 1° + d§’ (E1)
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Fig. E.32. Comparison between reversible envelopes generated via free-rotation (light blue) and constrained-rotation (blue) simulations, as well as via
homogenization-based approach (dark blue) for (a) the isotropic state A, (b) the anisotropic state B and (c) the preloaded state B'. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. E.33. 2D schematic of deformed particle contact.

where I¢ is the contact branch vector, and d8 is the fluctuation of the incremental contact deformation. Invoking the de-
composition of the contact deformation (Eq. (A.8)), we obtain:

d8°° + d8°P = d& - I° + d§° (E2)
We shall decompose the strain into a reversible and irreversible part:
de = d&" + d&g™ (E.3)

Remark 5. The total strain may be directly computed based on particle kinematics (Bagi, 2006), but this is not true for
its decomposition. By construction, the reversible component represents the strain derived from reversible grain-scale pro-
cesses, which coincide with elastic processes at that scale.

The reversible strain will be used to define elastic contact displacement fluctuations d8°° below:
d85® — d&™ . 1° 4 d3°° (E.4)

In analogy with previous analytical studies of purely elastic assemblies (e.g. (Misra and Chang, 1993)), the elastic fluctuations
in Eq. (E.4) are unknown, which calls for a closure relation, relating those to the average strain. This relation is furnished,
in this study, by the incremental force balance of all particles in the assembly. For a particle p sharing contacts CP with its
neighbors, we can write:

> dff =0 (E.5)
ceCp

Kd§** =0 (via Eq. (A.9)) (E.6)
>
ceCp
3 KO(dE™I +d8) =0 (via Eq. (E.4)) (E.7)

ceCP
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where KC is the contact stiffness given by Eq. (A.11).

The linear system obtained by collecting the equilibrium equations for all particles is generally underdetermined (de-
pending on the coordination number) and, therefore, needs to be supplemented by appropriate ‘boundary conditions’. Con-
sider the equilibrium of each of the two participating particles (p, q), assuming that i) contact ¢ experiences an unknown
fluctuation aSc'e, and ii) the first shell of contacts (i.e contacts between any of the participating particles (p, q) and their

neighbours (CP, CY respectively)) undergo a different unknown fluctuation dgc'e. This simplifies the equilibrium equation of
the two participating particles to a solvable system:

37 K (dEr + d3°) 4+ KO(d&™ I + d§") = 0 (E.8)
c’eCP\c

3 K (A& + d8°) + K (~de™ I —d§™) = 0 (E9)
c’eCi\c

where the sign change is due to change of reference (1”9 = I = —19P). Solving Eq. (E.8) for dgc’e and substituting into Eq. (E.9),
we finally obtain, after algebraic manipulations:

d8™ = _1°. dg™ (E10)
in terms of the fluctuation tensor:

r=[(+4) k] [ YK or - A YK o] (E11)

cecp cecd

and where:

A=(Y KI)( Y K9)! (E12)

c’eCP\c c’eCi\c

Combining Egs. (E.10) and (E.4), we can solve for the elastic contact displacement:

d§® =de™ . 1° — I'° : de™ (E13)

The final ingredient required here is the incremental version of the well-established virial stress relation (Bagi, 1996;
Christoffersen et al., 1981):

_ 1
45 = Y (@ eI +F e dl) (E14)

ceC
Rearranging Eq. (E.14), and using Eq. (A.9):
% > KdE @1 =do — %ch@)dlf =: do™ (E15)
ceC ceC

where the RHS represents the readily computable kinetic contribution to the stress increment.
The extraction of the reversible strain is concluded by substituting for Eq. (E.13) above, to obtain:

% Y K(de™ - I°—T°: de™) @ I° = do™ (E.16)
ceC
or:
& — [éZ(mKC@lC - l%@l(f.rf)]*dar"t (E17)
ceC

Note that the RHS solely involves micromechanical quantities readily available in a virtual experiment. Finally, the irre-
versible strain follows from Eq. (E.3) as de'"" = d& — de™".

Remark 6. Not surprisingly this approach leads to the development of a ‘nonaffine’ stiffness tensor (Eq. (E.17)). It is similar
in nature to the approach of Froiio and Roux (2010) who explicitly construct the stiffness of a disk assembly by adopting
(Agnolin and Roux, 2007b), and also intimately related to previous studies, outside the context of stress probing, that deal
with the analytical determination of the stiffness of an assembly of particles (Agnolin and Roux, 2007a; 2007b; 2008; Chang
and Hicher, 2005; Chang et al., 1992; 1992; Emeriault et al., 1996; Jenkins et al., 2005; Jenkins and Koenders, 2004; Liao
et al,, 1997; Misra and Chang, 1993; Nicot et al., 2005; Ragione, 2016; Tordesillas and Muthuswamy, 2008; Walsh et al.,
2007), most prominently the approach of Misra and Chang (1993), in the idealized setting and with a different closure
relation.
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Fig. F.34. Tangential vs normal contact forces at states (a) A, (b) B and (c) B’ for the granular and spherical assembly.
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Fig. F.35. Mobilized friction vs magnitude of normal contact force for the granular and spherical assembly at the (DC) direction at state B for (a) the
conventional, and (b) the reversible (inhibited dissipation) simulation.

Appendix F. Micromechanics of grains vs spheres

We extend here the macroscopic investigation of the influence of shape, given in Section 3.8, to the grain scale. This is
achieved by comparing micromechanical attributes of the granular assembly to those of its idealized spherical counterpart.
In particular, Fig. F.34 plots the tangential contact force f; as a function of the normal force f, for the three investigated states
(A, B, B'), with the dashed lines representing the average mobilized friction angles. Interestingly, the granular assembly
consistently exhibits a higher mobilization of interparticle friction at any given state, while the distribution of forces of
the two samples is qualitatively similar. Analogous observations can be made by inspecting Fig. F.35 which compares the
mobilized friction angle of the two assemblies plotted against the magnitude of normal force for the conventional and
reversible (DC) probes at state B. Beyond the clear qualitative agreement, we verify the emergence of a higher mobilized
interparticle friction for the granular assembly in the conventional probes. Measurements taken at different states and stress
paths led to the same conclusions, and were thus omitted in this comparison.
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